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Abstract. Graph theory, through the minimal spanning tree (MST), is used to determine site
percolation thresholdspc related to 2D regular lattices. It is shown that there is a direct relation
betweenpc and a geometrical parameter characterizing the lattices. Moreover, the methodology
developed in this paper makes it possible to study long-range percolation in an efficient way.

1. Introduction

Concepts of percolation theory have played an important role in our current understanding
of disordered systems and their properties [1, 2]. Recall that in the site percolation problem,
sites of a network are occupied with probabilityp and vacant with probability of 1− p. Two
nearest-neighbour sites are called connected if they are both occupied, and connected clusters
on the network are again defined in the obvious way. There exists a site percolation threshold
pc above which an infinite cluster of occupied sites spans the whole network [3].

Besides exact analysis, a variety of numerical methods have been used for the solution
of percolation problems, namely Monte Carlo and series expansion methods [4, 5]. Although
these methods turned out to be successful in solving some problems, they often require a
high computation time—except for a few approaches like that of Hoshen and Kopelman [6],
for instance. Moreover, the conventional methods to exactly compute percolation thresholds
are restricted so far to two dimensions [7, 8]. For that casepc values are only known for
triangular [9, 10], square [11, 12], honeycomb [10–13] and Kagomé [4] lattices. But there are
also 2D regular structures that are of interest, mainly all arrangements called mosaics which
are composed of an infinite set of regular polygons [14, 15]. The knowledge ofpc for those
mosaics may provide arguments for learning more about the percolation phenomenon.

Given that the essence of percolation theory is to determine how a given set of sites
regularly or randomly positioned in some space is interconnected, it seems quite realistic to
try using graph theory for tackling percolation problems. For this purpose Babalievski [16]
has recently discussed two basic approaches to the cluster counting task in the percolation
and related models, namely the Hoshen–Kopelman multiple labelling technique [6] for cluster
statistics and the graph-theoretical basis for the spanning tree approaches.

This paper is an enlargement of a previous approach [17] using graph theory. It is aimed
at showing that the minimal spanning tree (MST)—a special graph [18–20]—computed by
means of the Rohlf’s algorithm [21] is particularly well suited for determining thepc values
related to the above-mentioned mosaics. Moreover, such a new methodology makes it possible
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to study the long-range percolation problem [2, 22–24], namely the percolation related to the
second, third. . . nearest neighbour.

The paper is organized as follows. In section 2 we provide basic definitions of the
graph theory and we describe the algorithms that may be used to construct a MST. We give
arguments why Rohlf’s algorithm is best suited for the problem at hand. Section 3 deals
with numerical experimentation. Regular and semi-regular mosaics allowed in the plane are
described and details about the generation of point distributions are given. Section 4 is aimed
at computing the values of critical probability thresholdspc for the various mosaics. It is
shown that there is a direct relation betweenpc and the geometrical parameter characterizing
the mosaics. Computations are also extended to the study of long-range percolation. In
conclusion (section 5) we discuss our results in the context of the results of other studies.

2. Minimal spanning tree analysis

2.1. Definitions

Basic definitions of the graph theory are given in numerous papers and may be found for
instance in [18, 19]. Let us mention the fundamental definitions. An edge-weighted linear
graphG = (X,E) is composed of a set of pointsX = {x1, x2, . . .} called nodes and a set
of node pairsE = {(xi, xj )} called edges, with a number called weight (in this study the
Euclidean distance) assigned to each edge. A tree is a connected graph without closed loops.
A MST is a tree which contains all the nodes and where the sum of the edge weights is minimal.
It has been shown in previous papers [25, 26] that the MST is a powerful tool for studying order
and disorder in various systems. Indeed, depending on the starting point, there may be more
than one MST for a given set of points, but all the MSTs have the same edge-length histogram.
It follows that the statistical information deduced from the histogram, such as the average
edge-lengthm, the standard deviationσ or the higher moments (skewness and kurtosis), may
be used as characteristics for the corresponding set of points.

2.2. Algorithms

Numerous algorithms are available that enable us to compute the MST constructed from a set
of points. Four of them are particularly used, namely Prim’s [27], Kruskal’s [28], Dijkstra’s
[29] and Rohlf’s [21].

2.2.1. Prim’s algorithm. In Prim’s algorithm we start with a fixed node and, one by one, add
nodes along the least-cost edges. In other words, we add the nearest neighbour to the subgraph
that we have built so far, taken as a whole. We must avoid adding an edge that completes a
cycle, since a tree cannot have any cycle. The process is stopped when there are no new nodes
to add.

2.2.2. Kruskal’s algorithm. The methodology that leads to Kruskal’s algorithm is quite
different. The algorithm begins by preprocessing the edges of the complete graph, sorting
them by weight from cheapest to mostly costly. The algorithm then loops exactly(n − 1)
times, ifn points are considered, adding each time a cheapest edge that will not create a cycle
when added to the edges already included. Of course, as it adds an edge, it includes in the
graph the nodes incident to the edge.
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Figure 1. Partition of the space by means of a system of four
partially overlapping grids.G1: thick dashed line;G2: thick
full line; G3: thin full line; G4: thin dashed line.

2.2.3. Dijkstra’s algorithm. Dijkstra’s algorithm consists in retrieving a MST from a
supergraph which has to be determined prior to the construction of the MST. The principle is
as follows. It may be shown that the longest edge of a closed loop never belongs to a MST.
Thus a MST can be obtained from the supergraph by removing the longest edge of each cycle,
the order of removing being unimportant.

2.2.4. Rohlf ’s algorithm. We use Rohlf’s algorithm which makes it possible to determine
the MST constructed onn points in an efficient way, actually in timen ln n. Moreover, this
algorithm is particularly well suited for determining and studying clusters in the percolation
phenomenon. We will describe it in some detail. This algorithm proceeds in stages which
correspond to the selection of successively larger threshold distancesδi between two nearest
points. In the following we are only interested in 2D sets of points. Initially each point is
considered as a component of the MST or equivalently as a cluster of unit size.

At the first stage theδ1-value is determined by finding the minimal distance (in this paper
the Euclidean distance) for a random sample ofn pairs of points. Then a point is chosen at
random, and a possible nearest neighbour at a distanced 6 δ1 is investigated. To do that, the
space is partitioned by using a system of four partially overlapping gridsGk (k = 1, 2 . . .4)
consisting of 2δ1-sized square cells [30–32]. The gridG1 is superimposed to the sampling
window whileG2 andG3 correspond toG1 translated toδ1 in thex andy directions respectively;
G4 corresponds toG1 translated ofδ1 both in thex andy directions (figure 1). These grids
have the property that each pair of points such asd 6 δ1 must be found together inside at least
one cell of at least one grid. Thus, in order to link the randomly chosen point to its nearest
neighbour such asd 6 δ1, one only needs to compute distances between the given point and
the other points found in the same cells of the grid. At this stage, two cases may occur.

(i) There are no other points. Then the chosen point remains a cluster of unit size. Another
point is chosen at random among the(n− 1) remaining, and a possible nearest neighbour
at a distanced 6 δ1 is again investigated.

(ii) There are effectively other points. The chosen point is linked by an edge to the nearest
point and thus a cluster of size two is obtained. Then the nearest neighbour related to the
two points belonging to this cluster is tested. Other edges withd 6 δ1 are added to this
component of the MST currently under consideration wherever possible. When no more
additions can be made, another point is considered, chosen at random among those which
have not already been taken into account, and so on, until all the points of the starting
set have been considered. At the end of this stage one obtains a non-connected graph
which consists of various-sized clusters union. The size of each cluster is known, and in
particular the size of the largest one.
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At the second stage theδ2-value is determined by finding the minimum distance for a
random sample ofn pairs of points from the different components of the MST constructed
at the first stage. One operates as previously. Now the partially overlapping grids consist of
2δ2-sized square cells. Components of the MST are enlarged as possible by adding the edges
such asd 6 δ2. For this purpose one only needs to compute distances between points in the
given component and the other points which do not belong to the given component but are
found in the same cells of the grid. Further stages are carried out until the single final MST is
obtained.

The good efficiency of the algorithm originates in the use of systems of partially
overlapping grids to partition the space. It must be emphasized that the first stage provides
an attractive tool for studying percolation on lattice networks. Indeed it is enough to take
the lattice parameter value asδ1-value, to detect the clusters and determine their size easily.
Thus one can evaluate the probability for a point to belong to the largest cluster and study
this probability as a function of the probabilityp of site occupation. Moreover, it is possible
to consider also the second, third. . . nearest-neighbour, i.e. to study the so-called long-range
percolation without additional difficulty.

2.2.5. Comparison between algorithms.All the above MST algorithms need a similar
computation time ifn is smaller than 500. The first three are easy to implement. Rohlf’s
algorithm becomes much more efficient whenn is large because its complexity is O(n ln n)
instead of O(n2) for the others. Despite the fact that it needs a large memory, Rohlf’s algorithm
is particularly well suited for simultaneously studying the first as well as thekth nearest-
neighbour connections.

3. Numerical experimentation

3.1. Material

Mosaics in the plane are arrangements which are composed of an infinite set of adjacent regular
polygons, i.e. of polygons with the same edge length. Figure 2 shows the 11 possibilities
permitting such arrangements. Mosaics are of two types: (i) regular ones, i.e. constructed from
only one regular polygon (triangle, square, hexagon); (ii) semi-regular ones, i.e. constituted of
two or more regular polygons. Conventionally, mosaics are characterized by standard notation
[33] which is reported in figure 2.

To compare the different mosaics or the corresponding lattices, one may characterize each
by a normalized parameter, for instance the normalized edge lengthλ0. For this purpose we
impose the density of vertices to beρ = 1 for each mosaic. If1Xλ0 and1Yλ0 stand for the
size of an elementary cellM in thex andy directions respectively, andnM the number of
sites inM (figure 3), then the normalized edge lengthλ0 is given by

λ0 = (nM/1X1Y)1/2.
The corresponding values ofλ0 for the 11 lattices are reported in table 1.

3.2. Generation of point distributions

Points are independently uniformly distributed over the sites of mosaics as follows. LetN be
the total number of considered sites for a given mosaic (in this paperN = 600 000). Sites
are numbered 1 toN line by line. A sequence(νk)16k6N of N numbers distributed randomly
between zero and unity is generated from a pseudo random number generating program [34].
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Figure 2. Eleven possible arrangements of a set of points on a plane along regular or semi-regular
mosaics. Each mosaic is characterized by standard notation (for instance 36 for the triangular
lattice) according to [33].

To each siteSk (k = 1, 2, . . . N) is assigned thekth random numberνk. Then we fix a
probability of occupationp̃ at each site. A siteSk is considered as occupied by a point if
νk 6 p̃. The process begins with̃p = p̃0 = 0: no site is occupied. The second stage
corresponds to a probability of occupationp̃1 defined as̃p1 = p̃0 +1p where1p is a uniform
step of probability (1p = 0.01 in this study)—and so on and so forth until theith stage where
p̃i is given byp̃i = p̃i−1 + 1p. The process is carried out untilp̃ = 1. Actually, the real
probability of occupation at each site at theith step ispi = Ni/N whereNi is the number
of effectively occupied sites. The probabilitypi is a random variable such as̃pi = E[pi ],
whereE stands for the expected value. Thus one obtains a setE of point distributions, each
one generated by a random process and corresponding to a given probability of occupation
at each site. The number of distributions depends on the chosen value1p. To avoid effects
due to the use of finite lattices, mosaics are placed on a torus. Moreover, with a view to
reducing statistical fluctuations, each mosaic is studied from nine setsE`(` = 1, 2, . . .9) of
point distributions, each set being characterized by a sequence(νk)16k6N . Results are given
as averages over these nine sets to obtain data with sufficiently small sampling errors.
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Figure 3. Possible elementary cell for the two lattices: (a) Triangular
lattice with1X = √3, 1Y = 3, nM = 4; (b) Kagoḿe lattice with
1X = 2,1Y = 2

√
3, nM = 6.

Table 1. Values ofpc, normalized lattice parameterλ0, site degreeDg , normalized MST average
edge lengthmc andc = mc/λ0 for the mosaics represented in figure 2.

pc

Mosaics Literature values λ0 Dg mc c = mc/λ0

36 0.500 0.5000 [9, 10] 1.075 6 0.779 0.725
Triangular 0.500 [22, 23]
33.42 0.549 1.035 5 0.781 0.755
32.4.3.4 0.550 1.035 5 0.782 0.756
34.6 0.580 0.995 5 0.776 0.780
44 0.590 0.5927 [11, 12] 1 4 0.784 0.784
Square 0.590 [22, 23]
3.4.6.4 0.621 0.963 4 0.773 0.803
3.6.3.6 0.650 0.652 [4] 0.931 4 0.770 0.837
Kagoḿe
63 0.698 0.6962 [10, 13] 0.877 3 0.759 0.865
Honeycomb 0.700 [22, 23]
4.82 0.729 0.828 3 0.726 0.877
4.6.12 0.746 0.787 3 0.693 0.882
9.122 0.807 0.705 3 0.650 0.922

3.3. MST computation time

Computations have been performed on a Digital Alpha Station 255/233 MHz. As a guide, the
computation time for constructing a MST from 5× 105 occupied sites over 106, was about
30s cpu for the honeycomb lattice.
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Figure 4. (a) Plot of the probabilityP that an occupied site belongs to the largest cluster versus
the probabilityp of occupancy of the sites for the triangular lattice; (b) plot of the derivative ofP
versusp; (c) and (d) are the same as (a) and (b) for the(3.122) mosaic.

4. Results

4.1. First nearest-neighbour connections (classical percolation)

For a probabilitypi = Ni/N of site occupation, the first stage of Rohlf’s algorithm enables us
to know the sizeni of the largest cluster easily and so to compute the probabilityPi = ni/Ni
that a point belongs to it. To do that it is enough to take the lattice parameter value as the
δ1-value. By considering variouspi values it is then possible to study the variations ofPi
versuspi . Depending on the behaviour of clusters when percolation occurs, one expects to
obtain a particular behaviour forPi . Figure 4(a) shows the graphP = f (p) for the triangular
lattice(36). The curve actually exhibits a pronounced inflexion point for a critical probability
pc, which corresponds to a jump inP values. Quite similar graphs are obtained for each
mosaic, the critical probabilitypc differing from one to the other, as can be seen, for instance,
in figure 4(c) related to the(3.122) mosaic. Thispc value is determined from thep value for
which the derivative dP/dp exhibits a maximum (figures 4(b) and 4(d)).

Results obtained for the 11 mosaics are reported and classified in ascending order in table 1.
It can be noted that thepc values related to triangular(36), square(44), honeycomb(63) and
Kagoḿe(3.6.3.6) lattices are in good agreement with percolation threshold values found either
in a theoretical way [9] or by other methods [10–13, 22, 23]. With a view to clarify the link
between the computed critical probabilitiespc and the geometrical parameters characterizing
the mosaics, the normalized lattice parameter valuesλ0 as well as the site degreeDg have also
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Figure 5. Plots of the site percolation thresholds for the 11
mosaics of figure 2 versus the normalized lattice parameterλ0
characterizing the mosaics. The solid curve is a least-squares
fit to the data: (a) linear approach, (b) polynomial approach.

been reported in table 1 for each mosaic. It may be seen thatpc increases asλ0 decreases.
Moreover, for the two mosaics(33.42) and(32.4.3.4) which have the sameλ0 value, thepc
values are found to be equal within the accuracy range of their measurements. Figure 5(a)
shows the variation ofpc versusλ0. There is roughly a linear dependence betweenpc andλ0.
The solid curve is a least-square fit to the data and has the equation:

pc = 1.397− 0.816λ0. (1)

A more accurate fit to the data may be obtained by means of a polynomial approach, namely:

pc = 0.715 + 0.735λ0 − 0.866λ2
0 (2)

as is shown in figure 5(b). So, there is clearly a relation between the percolation threshold
and the geometric parameterλ0 which characterizes the mosaic. This relation may be made
conclusive if a new dimensionless parameter is introduced. Indeed, let us consider the values
of mc, namely the normalized values of the MST average edge length forp = pc, which
are reported in table 1. The MST edge length values have been normalized according to the
process described by Hofmann and Jain [35]. Given that the expected length of a randomly
chosen edge of a MST constructed fromNi uniformly distributed points in a sampling window
V , is asymptotically proportional [36] to

(NiV )
1/2/(Ni − 1) (3)

the normalized values are obtained by dividing the original ones by expression (3). ForNi
large enough (Ni ∼ Ni − 1) and a density of vertices in the latticeρ = 1, it amounts to
multiplying the original edge length values by(pi)1/2. The variation ofpc versusmc (figure 6)
does not exhibit an interesting behaviour. On the other hand, if we consider the dimensionless
variablec = mc/λ0 whose values are reported in table 1, it clearly appears in figure 7 that the
pc values vary linearly withc. The solid line which is a least-square fit to the data has the
equation:

pc = −0.598 + 1.514c. (4)
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Figure 6. Plot of the site percolation thresholds for the 11
mosaics of figure 2 versus the normalized MST average
edge lengthmc.

Figure 7. Plot of the site percolation thresholds for the
mosaics of figure 2 versusc = mc/λ0.

That shows there is a link betweenpc, the MST and the geometry of the system. Links
between percolation and the MST have recently been shown theoretically by Bezuidenhout
et al [37]. The new above-defined parameterc should be of interest in studies on conductivity,
for instance. One also notes that aspc increases the site degreeDg of the corresponding
mosaics decreases, but not as a monotone function. So an initial analysis shows that there is
no simple dependence betweenpc and the site degreeDg of the mosaics.

4.2. kth nearest-neighbour connections(k > 2) (long-range percolation)

If we do not stop it at the first stage, Rohlf’s algorithm enables us to determine, in only
one run, the size of the largest cluster relative to first, second, third. . . nearest-neighbour
connections successively. This is possible by taking the increasing normalized inter-site
distancesdj = αjλ0(j = 1, 2, 3 . . .) asδj -values.

With a view to testing the method, second and third-neighbour connections for the square
lattice(44)were first considered. For this mosaicα2 =

√
2 andα3 = 2. The values determined

for pc, namely 0.404 and 0.290 respectively, compare favourably on the one hand with 0.401
obtained by Dean [38] and 0.410 obtained by Daltonet al [22, 23], and on the other hand with
0.292 given by Daltonet al [22, 23].

Then a study was carried out on the triangular(36), the honeycomb(63) and the Kagoḿe
(3.6.3.6) lattices, respectively. These mosaics have the sameαj -values. The first five
αj (j = 1, 2, 3, 4, 5) are such asα2

j = {1, 3, 4, 7, 9}. For a given probabilitypi = Ni/N

of site occupation and for eachαj , the probabilityPij = nij /Ni that a point belongs to the
largest cluster of sizenij was computed. Figure 8(a) shows the variation ofP withp, forα = 1,√

3, 2,
√

7, 3 respectively, in the case of the honeycomb lattice(63). Curves corresponding to
α = √3, 2,

√
7, 3 are similar to those relative toα = 1: they all present an inflection point for

a critical probabilitypc which is all the smaller asd is larger. Thepc values were evaluated
as previously, i.e. from thep value for which the derivative dP/dp is maximum (figure 8(b)).

A similar behaviour ofP = f (p) is obtained for the triangular(36) and the Kagoḿe
(3.6.3.6) mosaics when considering successive inter-site distancesd. Results for the three
lattices are summarized in table 2, where thepc values and the corresponding normalized
inter-site distancesd = αλ0 are also reported. Figure 9 shows the plot of ln(pc) versus ln(d)
for all the inter-site distances considered in this study. It can be seen that for higher nearest-
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Figure 8. (a) ProbabilityP for a point to belong to the
largest cluster versus the probability of site occupation for
the honeycomb lattice. From right to left the curves are
related to the first, second, third, fourth and fifth nearest-
neighbour connections respectively, i.e. to normalized
inter-site distancesd = αλ0 with α = 1,

√
3, 2,

√
7

and 3; (b) derivative dP/dp versusp.

Figure 9. ln(pc) versus ln(d) (d: normalized inter-
site distance); filled circles: first nearest-neighbour
connections for the mosaics represented in figure 2;
square: second and third nearest-neighbour connections
for the(44) lattice; filled triangles: second, third, fourth
and fifth nearest-neighbour connections for the(36)

lattice; filled lozenges: as previously for the(63) lattice;
circles: as previously for the(3.6.3.6) lattice.

Table 2. Values ofpc for the second to fifth nearest-neighbour connections which are characterized
by the normalized inter-site distanced = αλ0, for the three mosaics(36), (3.6.3.6) and(63). In
italic, pc literature values.

Second nearest- Third nearest- Fourth nearest- Fifth nearest-
neighbour neighbour neighbour neighbour

connections connections connections connections

Lattices d2 =
√

3λ0 pc d3 = 2λ0 pc d4 =
√

7λ0 pc d5 = 3λ0 pc

36 1.861 0.290 2.149 0.214 2.843 0.133 3.224 0.115
Triangular 0.295[22, 23] 0.225[22, 23]
3.6.3.6 1.612 0.386 1.861 0.261 2.462 0.179 2.792 0.151
Kagoḿe
63 1.520 0.361 1.755 0.300 2.321 0.210 2.632 0.163
Honeycomb 0.300[22, 23]

neighbour connections data may be fitted with a good approximation by a linear relation:

ln(pc) = a ln(d) + b (5)
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with a = −1.572, b = −0.299. This is not the case when only first nearest-neighbour
connections are taken into account. Thus the dependence ofpc on d differs depending
on whether we consider first nearest-neighbour connections or higher nearest-neighbour
connections. Nevertheless, the above approach obtained for(36), (3.6.3.6), and(63) lattices,
has to be confirmed for the other mosaics.

5. Conclusion

It is clear that the results presented in this paper emphasize the potentialities of the graph
theory via the MST to study percolation. Indeed, by using this procedure it became possible to
determine the percolation thresholds related to all the regular and semi-regular mosaics allowed
in the plane in quite a sensible computation time. Most of these thresholds were unknown
until now and were difficult to find by using conventional methods. For this purpose, Rohlf’s
algorithm turned out to be very efficient. Indeed, unlike other algorithms, such as Hoshen-
Kopelman’s [6] for instance, Rohlf’s algorithm takes only the number of occupied sites into
account instead of the total number of lattice network sites. This decreases the computational
time for weak probabilities of site occupation. However, although the memory complexity
is linear, it is larger than the one related to Hoshen–Kopelman’s approach. So, according
to Babalievski [16], Hoshen–Kopelman’s algorithm is more suitable for very large systems
whereas the spanning tree approach can easily solve more sophisticated tasks in systems of a
moderate size.

Our results indicate that there is a direct relation between percolation threshold and the
normalized lattice parameter characterizing the mosaics. The nature of this relation is central
to learning more about the percolation phenomenon. Recently, Galam and Mauger in a series
of papers [39] collected many percolation thresholds to compare them with some general fitting
formula, similar in spirit to the present aims. On the other hand, we have shown there is a
linear dependence between percolation threshold and a new parameter linked to the MST and
the geometry of the system. Unfortunately, we are not able to interpret it yet. Finally, the
flexibility of Rholf’s algorithm enabled us to study long-range percolation, a phenomenon that
very few people have investigated before, and the methodology we used should allow us to
study lattices at dimensions greater than two and also non-regular arrangements.
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